
More about inheritance

Exploring polymorphism

5.0

2

Main concepts to be covered

• method polymorphism
• static and dynamic type
• overriding
• dynamic method lookup
• protected access

Objects First with Java - A Practical Introduction using BlueJ, © David J. Barnes, Michael Kölling

3

The inheritance hierarchy

Objects First with Java - A Practical Introduction using BlueJ, © David J. Barnes, Michael Kölling

4

Conflicting output

Objects First with Java - A Practical Introduction using BlueJ, © David J. Barnes, Michael Kölling

Leonardo da Vinci
Had a great idea this morning.
But now I forgot what it was. Something to do with flying ...
40 seconds ago - 2 people like this.
No comments.

Alexander Graham Bell
[experiment.jpg]
I think I might call this thing 'telephone'.
12 minutes ago - 4 people like this.
No comments.

Leonardo da Vinci
40 seconds ago - 2 people like this.
No comments.

Alexander Graham Bell
12 minutes ago - 4 people like this.
No comments.

What we want

What we have

5

The problem

• The display method in Post only
prints the common fields.

• Inheritance is a one-way street:
– A subclass inherits the superclass fields.
– The superclass knows nothing about its

subclass’s fields.

Objects First with Java - A Practical Introduction using BlueJ, © David J. Barnes, Michael Kölling

6

Attempting to solve the
problem

• Place display where
it has access to the
information it needs.

• Each subclass has its
own version.

• But Post’s fields are
private.

• NewsFeed cannot
find a display
method in Post.

Objects First with Java - A Practical Introduction using BlueJ, © David J. Barnes, Michael Kölling

7

Static type and dynamic type

• A more complex type hierarchy
requires further concepts to describe
it.

• Some new terminology:
– static type
– dynamic type
– method dispatch/lookup

Objects First with Java - A Practical Introduction using BlueJ, © David J. Barnes, Michael Kölling

8

Static and dynamic type

Objects First with Java - A Practical Introduction using BlueJ, © David J. Barnes, Michael Kölling

Car c1 = new Car();What is the type of c1?

Vehicle v1 = new Car();What is the type of v1?

9

Static and dynamic type

• The declared type of a variable is its
static type.

• The type of the object a variable
refers to is its dynamic type.

• The compiler’s job is to check for
static-type violations.
for(Post post : posts) {

post.display(); // Compile-time error.
}

Objects First with Java - A Practical Introduction using BlueJ, © David J. Barnes, Michael Kölling

10

Overriding: the solution

Objects First with Java - A Practical Introduction using BlueJ, © David J. Barnes, Michael Kölling

display method
in both super-
and subclasses.

Satisfies both
static and

dynamic type
checking.

11

Overriding

• Superclass and subclass define
methods with the same signature.

• Each has access to the fields of its
class.

• Superclass satisfies static type check.
• Subclass method is called at runtime

– it overrides the superclass version.
• What becomes of the superclass

version?

Objects First with Java - A Practical Introduction using BlueJ, © David J. Barnes, Michael Kölling

12

Distinct static and
dynamic types

Objects First with Java - A Practical Introduction using BlueJ, © David J. Barnes, Michael Kölling

13

Method lookup

Objects First with Java - A Practical Introduction using BlueJ, © David J. Barnes, Michael Kölling

No inheritance or polymorphism.
The obvious method is selected.

14

Method lookup

Objects First with Java - A Practical Introduction using BlueJ, © David J. Barnes, Michael Kölling

Inheritance but no
overriding. The inheritance

hierarchy is ascended,
searching for a match.

15

Method lookup

Objects First with Java - A Practical Introduction using BlueJ, © David J. Barnes, Michael Kölling

Polymorphism and
overriding. The ‘first’
version found is used.

16

Method lookup summary

• The variable is accessed.
• The object stored in the variable is found.
• The class of the object is found.
• The class is searched for a method match.
• If no match is found, the superclass is

searched.
• This is repeated until a match is found, or

the class hierarchy is exhausted.
• Overriding methods take precedence.

Objects First with Java - A Practical Introduction using BlueJ, © David J. Barnes, Michael Kölling

17

Super call in methods

• Overridden methods are hidden ...
• ... but we often still want to be able

to call them.
• An overridden method can be called

from the method that overrides it.
– super.method(...)

– Compare with the use of super in
constructors.

Objects First with Java - A Practical Introduction using BlueJ, © David J. Barnes, Michael Kölling

18

Calling an overridden method

Objects First with Java - A Practical Introduction using BlueJ, © David J. Barnes, Michael Kölling

public void display()
{

super.display();
System.out.println(" [" +

filename +
"]");

System.out.println(" " + caption);
}

19

Method polymorphism

• We have been discussing polymorphic
method dispatch.

• A polymorphic variable can store
objects of varying types.

• Method calls are polymorphic.
– The actual method called depends on

the dynamic object type.

Objects First with Java - A Practical Introduction using BlueJ, © David J. Barnes, Michael Kölling

20

The instanceof operator

• Used to determine the dynamic type.
• Recovers ‘lost’ type information.
• Usually precedes assignment with a

cast to the dynamic type:
if(post instanceof MessagePost) {

MessagePost msg =
(MessagePost) post;

… access MessagePost methods via msg …
}

Objects First with Java - A Practical Introduction using BlueJ, © David J. Barnes, Michael Kölling

21

The Object class’s methods

• Methods in Object are inherited by
all classes.

• Any of these may be overridden.
• The toString method is commonly

overridden:
– public String toString()

– Returns a string representation of the
object.

Objects First with Java - A Practical Introduction using BlueJ, © David J. Barnes, Michael Kölling

22

Overriding toString in Post

Objects First with Java - A Practical Introduction using BlueJ, © David J. Barnes, Michael Kölling

public String toString()
{

String text = username + "\n" +
timeString(timestamp);

if(likes > 0) {
text += " - " + likes + " people like this.\n";

}
else {

text += "\n";
}
if(comments.isEmpty()) {

return text + " No comments.\n";
}
else {

return text + " " + comments.size() +
" comment(s). Click here to view.\n";

}
}

23

Overriding toString

• Explicit print methods can often be
omitted from a class:
System.out.println(post.toString());

• Calls to println with just an object
automatically result in toString
being called:
System.out.println(post);

Objects First with Java - A Practical Introduction using BlueJ, © David J. Barnes, Michael Kölling

24

StringBuilder

• Consider using StringBuilder as
an alternative to concatenation:

StringBuilder builder = new StringBuilder();
builder.append(username);
builder.append('\n');
builder.append(timeString(timestamp));
…
return builder.toString();

Objects First with Java - A Practical Introduction using BlueJ, © David J. Barnes, Michael Kölling

25

Object equality

• What does it mean for two objects to
be ‘the same’?
– Reference equality.
– Content equality.

• Compare the use of == with
equals() between strings.

Objects First with Java - A Practical Introduction using BlueJ, © David J. Barnes, Michael Kölling

26

Overriding equals

Objects First with Java - A Practical Introduction using BlueJ, © David J. Barnes, Michael Kölling

public boolean equals(Object obj)
{

if(this == obj) {
return true;

}
if(!(obj instanceof ThisType)) {

return false;
}
ThisType other = (ThisType) obj;
… compare fields of this and other

}

27

Overriding equals in
Student

Objects First with Java - A Practical Introduction using BlueJ, © David J. Barnes, Michael Kölling

public boolean equals(Object obj)
{

if(this == obj) {
return true;

}
if(!(obj instanceof Student)) {

return false;
}
Student other = (Student) obj;
return name.equals(other.name) &&

id.equals(other.id) &&
credits == other.credits;

}

28

Overriding hashCode in
Student

Objects First with Java - A Practical Introduction using BlueJ, © David J. Barnes, Michael Kölling

/**
* Hashcode technique taken from
* Effective Java by Joshua Bloch.
*/

public int hashCode()
{

int result = 17;
result = 37 * result + name.hashCode();
result = 37 * result + id.hashCode();
result = 37 * result + credits;
return result;

}

29

Protected access

• Private access in the superclass may be too
restrictive for a subclass.

• The closer inheritance relationship is
supported by protected access.

• Protected access is more restricted than
public access.

• We still recommend keeping fields private.
– Define protected accessors and mutators.

Objects First with Java - A Practical Introduction using BlueJ, © David J. Barnes, Michael Kölling

30

Access levels

Objects First with Java - A Practical Introduction using BlueJ, © David J. Barnes, Michael Kölling

31

Review

• The declared type of a variable is its static
type.
– Compilers check static types.

• The type of an object is its dynamic type.
– Dynamic types are used at runtime.

• Methods may be overridden in a subclass.
• Method lookup starts with the dynamic

type.
• Protected access supports inheritance.

Objects First with Java - A Practical Introduction using BlueJ, © David J. Barnes, Michael Kölling

