More about inheritance

Exploring polymorphism

Main concepts to be covered

« method polymorphism

» static and dynamic type
 overriding

e dynamic method lookup
« protected access

Objects First with Java - A Practical Introduction using Blued, © David J. Barnes, Michael Kolling 2

The inheritance hierarchy

NewsFeed

>

display
MessagePost PhotoPost
R — T —

Objects First with Java - A Practical Introduction using BluedJ, © David J. Barnes, Michael Kolling

Conflicting output

Leonardo da Vinci
Had a great idea this morning.
But now I forgot what it was. Something to do with flying
40 seconds ago - 2 people like this.
No comments.

Alexander Graham Bell
[experiment. jpg]
I think I might call this thing 'telephone’'.
12 minutes ago - 4 people like this.
No comments.

Leonardo da Vinci
40 seconds ago - 2 people like this.
No comments.
What we have
Alexander Graham Bell
12 minutes ago - 4 people like this.
No comments.

Objects First with Java - A Practical Introduction using Blued, © David J. Barnes, Michael Kolling 4

The problem

 The display method in Post only
prints the common fields.

 Inheritance is a one-way street:
- A subclass inherits the superclass fields.

- The superclass knows nothing about its
subclass’ s fields.

Objects First with Java - A Practical Introduction using Blued, © David J. Barnes, Michael Kolling

Attempting to solve the
problem

o Place display where
it has access to the
information it needs.

Each subclass has its
own version.

; : But Post’s fields are

MessagePost PhotoPost pl’iVa te.
NewsFeed cannot
find a display
method in Post.

? Post

N4

aisplay ai.splay
S —

Objects First with Java - A Practical Introduction using BluedJ, © David J. Barnes, Michael Kolling 6

Static type and dynamic type

« A more complex type hierarchy
requires further concepts to describe
it.

¢ Some new terminology:
- static type
- dynamic type
- method dispatch/lookup

Objects First with Java - A Practical Introduction using Blued, © David J. Barnes, Michael Kolling 7

Static and dynamic type

What is the type of c1?) Car cl = new Car();

What is the type of v1?) Vehicle vl = new Car();

Objects First with Java - A Practical Introduction using Blued, © David J. Barnes, Michael Kolling 8

Static and dynamic type

« The declared type of a variable is its
static type.

« The type of the object a variable
refers to is its dynamic type.

« The compiler’s job is to check for
static-type violations.

for (Post post : posts) {
post.display() ; // Compile-time error.

}

Objects First with Java - A Practical Introduction using Blued, © David J. Barnes, Michael Kolling 9

Overriding: the solution

NewsFeed

display method
in both super-
and subclasses.

V4

o /
display
MessagePost PhotoPost
/ Satisfies both
display display static and

dynamic type
checking.

Objects First with Java - A Practical Introduction using BluedJ, © David J. Barnes, Michael Kolling 10

Overriding

 Superclass and subclass define
methods with the same sighature.

e Each has access to the fields of its
class.

 Superclass satisfies static type check.

« Subclass method is called at runtime
- it overrides the superclass version.

 What becomes of the superclass
version?

Objects First with Java - A Practical Introduction using Blued, © David J. Barnes, Michael Kolling 1

Distinct static and
dynamic types

Post post

I PhotoPost

Objects First with Java - A Practical Introduction using BluedJ, © David J. Barnes, Michael Kolling 12

Method lookup

v1.display(); PhotoPost
PhotoPost v1; aiSpIay
——— ’—
/_\ insfance, of
ﬂOIQB;_;I

No inheritance or polymorphism.
The obvious method is selected.

Objects First with Java - A Practical Introduction using BluedJ, © David J. Barnes, Michael Kolling 13

Method lookup

v1. display(); Post

display

PhotoPost

PhotoPost v1i;

— b A
/\ instance of

— Inheritance but no

‘ \ overriding. The inheritance

hierarchy is ascended,

searching for a match.

Objects First with Java - A Practical Introduction using BluedJ, © David J. Barnes, Michael Kolling 14

Method lookup

v1. display(); Post
display
PhotoPost
Post v1;
oSty display

— ,’—
/\ ins{ancé of
: PhotoPost .
‘ \ Polymorphism and

overriding. The ‘first’
version found is used.

Objects First with Java - A Practical Introduction using BluedJ, © David J. Barnes, Michael Kolling 15

Method lookup summary

 The variable is accessed.
» The object stored in the variable is found.
« The class of the object is found.

« The class is searched for a method match.

 If no match is found, the superclass is
searched.

« This is repeated until a match is found, or
the class hierarchy is exhausted.

« Overriding methods take precedence.

Objects First with Java - A Practical Introduction using Blued, © David J. Barnes, Michael Kolling 16

Super call in methods

 Overridden methods are hidden ...

... but we often still want to be able
to call them.

 An overridden method can be called
from the method that overrides it.

— super .method(...)

- Compare with the use of super in
constructors.

Objects First with Java - A Practical Introduction using Blued, © David J. Barnes, Michael Kolling 17

Calling an overridden method

public void display ()

{
super .display () ;
System.out.println(" [" +
filename +
"1")
System.out.println(" " + caption);
}

Objects First with Java - A Practical Introduction using Blued, © David J. Barnes, Michael Kolling 18

Method polymorphism

« We have been discussing polymorphic
method dispatch.

A polymorphic variable can store
objects of varying types.
* Method calls are polymorphic.

- The actual method called depends on
the dynamic object type.

Objects First with Java - A Practical Introduction using Blued, © David J. Barnes, Michael Kolling 19

The instanceof operator

« Used to determine the dynamic type.
« Recovers ‘lost’ type information.

« Usually precedes assignment with a

cast to the dynamic type:
if (post instanceof MessagePost) {
MessagePost msg =
(MessagePost) post;
... access MessagePost methods via msg ...

Objects First with Java - A Practical Introduction using Blued, © David J. Barnes, Michael Kolling 20

The Object class' s methods

Methods in Object are inherited by
all classes.
Any of these may be overridden.

The tosString method is commonly
overridden:
—public String toString()

- Returns a string representation of the
object.

Objects First with Java - A Practical Introduction using Blued, © David J. Barnes, Michael Kolling 21

Overriding toString in Post

public String toString()
{
String text = username + "\n" +
timeString (timestamp) ;
if (likes > 0) {
text 4= " - " + likes + " people like this.\n";
}

else {
text += "\n";
}
if (comments.isEmpty()) {
return text + " No comments.\n";

}

else {
return text + " " + comments.size() +
" comment(s). Click here to view.\n";

Objects First with Java - A Practical Introduction using Blued, © David J. Barnes, Michael Kolling 22

Overriding toString

« Explicit print methods can often be
omitted from a class:
System.out.println (post.toString()) ;

« Calls to println with just an object
automatically result in toString

being called:
System.out.println(post) ;

Objects First with Java - A Practical Introduction using Blued, © David J. Barnes, Michael Kolling 23

StringBuilder

« Consider using StringBuilder as
an alternative to concatenation:

StringBuilder builder = new StringBuilder();
builder.append(username);
builder.append(\n’);
builder.append(timeString(timestamp));

return builder.toString();

Objects First with Java - A Practical Introduction using Blued, © David J. Barnes, Michael Kolling 24

Object equality

« What does it mean for two objects to
be ‘the same’?

- Reference equality.
- Content equality.

« Compare the use of == with
equals () between strings.

Objects First with Java - A Practical Introduction using Blued, © David J. Barnes, Michael Kolling 25

Overriding equals

public boolean equals (Object obj)
{
if (this == obj) {
return true;
}
if (! (obj instanceof ThisType)) {
return false;
}
ThisType other = (ThisType) obj;
. compare fields of this and other

Objects First with Java - A Practical Introduction using Blued, © David J. Barnes, Michael Kolling 26

Overriding equals in
Student

public boolean equals (Object obj)

{
if (this == obj) {
return true;
}
if (! (obj instanceof Student)) ({
return false;
}
Student other = (Student) obj;
return name.equals (other.name) &&
id.equals (other.id) &&
credits == other.credits;

Objects First with Java - A Practical Introduction using Blued, © David J. Barnes, Michael Kolling 27

Overriding hashCode in
Student

/**
* Hashcode technique taken from
* Effective Java by Joshua Bloch.
*/

public int hashCode ()

int result = 17;

result = 37 * result + name.hashCode() ;
result = 37 * result + id.hashCode () ;
result = 37 * result + credits;

return result;

Objects First with Java - A Practical Introduction using Blued, © David J. Barnes, Michael Kolling 28

Protected access

* Private access in the superclass may be too
restrictive for a subclass.

« The closer inheritance relationship is
supported by protected access.

e Protected access is more restricted than
public access.

« We still recommend keeping fields private.
- Define protected accessors and mutators.

Objects First with Java - A Practical Introduction using Blued, © David J. Barnes, Michael Kolling 29

Access levels

protected

Objects First with Java - A Practical Introduction using Blued, © David J. Barnes, Michael Kolling 30

Review

« The declared type of a variable is its static
type.

- Compilers check static types.

« The type of an object is its dynamic type.
- Dynamic types are used at runtime.

« Methods may be overridden in a subclass.
« Method lookup starts with the dynamic

type.
* Protected access supports inheritance.

Objects First with Java - A Practical Introduction using Blued, © David J. Barnes, Michael Kolling 31

